-16t^2+63t+4=50

Simple and best practice solution for -16t^2+63t+4=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+63t+4=50 equation:



-16t^2+63t+4=50
We move all terms to the left:
-16t^2+63t+4-(50)=0
We add all the numbers together, and all the variables
-16t^2+63t-46=0
a = -16; b = 63; c = -46;
Δ = b2-4ac
Δ = 632-4·(-16)·(-46)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-5\sqrt{41}}{2*-16}=\frac{-63-5\sqrt{41}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+5\sqrt{41}}{2*-16}=\frac{-63+5\sqrt{41}}{-32} $

See similar equations:

| 6(2x+4)+2x=52 | | 2+2(6x-4)=-2(2x-4)+6x | | 4-3(2x+6)-9=0 | | 4x^2-9=-9x | | 2/15y=45/18 | | p=6,000(1+0.5)-^4 | | 0=3x2-18x+7 | | x^2+(x^2-4)^2=16 | | x+7/2=19 | | 1c+7+3c=5c+11 | | x/2+7=29 | | 14=-7x35 | | y=-5(-5-3) | | 12.39+0.08x=13.14-0.07x | | y=-5(-2-3) | | 5x-8=11+-7x+12x | | |2n-9|=|n+6| | | y=-5(-4-3) | | 5(u-8)-7u=-34 | | -x/5=30 | | y=7(-7+6) | | 5x-8=11-7x+12× | | 13.92+0.08x=14.42-0.13x | | y=7(7+6) | | 10s•5=20 | | 5x=4-20 | | y=7(-2+6) | | 2q+451=913 | | y=7(-8+6) | | 2(x+4)=16x+2 | | y=7(-8+6 | | 3x+x+4=-2x+10 |

Equations solver categories